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ABSTRACT

A three-layer, horizontally homogeneous, quasigeostrophic model is selected as one of the simplest environments
in which to study the sensitivity of baroclinic eddy fluxes in the atmosphere to the vertical structure of the basic-
state temperature gradients or vertical wind shears. Eddy statistics obtained from the model are interpreted in
terms of linear theory and a modified “baroclinic adjustment” hypothesis. Both linear theory and the baroclinic
adjustment construction are found to provide useful predictions for the vertical structure of the eddy potential

vorticity flux.

For equal values of the mean vertical shear, eddy fluxes and energies are greater when the shear is concentrated
at lower levels (dU/dz? < 0) than when the shear is concentrated at higher levels (d2U/dz? > 0). Eddy fluxes
are more sensitive to lower- than to upper-level mean temperature gradients. This relative sensitivity is a function
of vy = f2A/(BN*H), where A is the mean vertical shear and H is the depth of the fluid. It is enhanced as v is
reduced, as the unstable modes become shallower, until the eddies become almost completely insensitive to the

strength of the upper-layer wind for y < 0.5.

1. Introduction

In the standard two-layer quasigeostrophic model,
the relationship between the meridional potential vor-
ticity (PV) flux F, momentum flux A, and heat flux
His

F,=—0M,/dy — aH,
F;=—oM;/dy + aH,

where the subscripts u and [ refer to the upper and
lower layers and « is a constant. If the horizontal do-
main is a reentrant channel bounded meridionally by
rigid walls, then the horizontal average of the PV flux
in the upper layer must be equal and opposite to that
in the lower layer, since M vanishes at the walls.

The homogeneous turbulence studies of Salmon
(1980), Haidvogel and Held (1980), and Vallis (1988),
using a two-layer quasigeostrophic model with time-
mean vertical shear, are in a sense fundamentally sim-
pler than inhomogeneous turbulence studies in a
channel, in that there is no time-mean momentum
flux divergence. In such a model, the time-mean PV
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flux at any latitude in the lower layer must be equal
and opposite to that in the upper layer, and knowledge
of a single number (F in the lower layer, say) yields
complete information about the climatological PV flux,
heat flux, and eddy energy generation. (In practice,
very long integrations are required to obtain nearly
homogeneous statistics in such models, and one uses
the average over the horizontal domain as well as over
time to obtain the best estimate of the infinite-time
mean at any latitude.)

As more vertical layers are included in such a ho-
mogeneous model, the vertically integrated PV flux
must still be zero, but the question of how this flux is
distributed in the vertical becomes an issue. Our pur-
pose in this study is to investigate the vertical structure
of the PV flux in the simplest nontrivial context,
namely, that of a three-layer horizontally homogeneous
model.

In the three-layer model, there are two “temperature
gradients,” corresponding to the vertical shears across
the two interfaces. This is the simplest framework in
which to study the effects of height-dependent shear,
or the separate effects of upper- and lower-level tem-
perature gradients, on eddy statistics. The dependence
of eddy fluxes on the mean meridional temperature
gradient is addressed by various eddy flux closure
schemes, such as those of Stone (1972), Green (1970),
and Held (1978), but the arguments underlying these
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“theories” are sufficiently qualitative that they give little
guidance as to the dependence on temperature gra-
dients at different levels. This issue is potentially of
interest with regard to dynamics of the greenhouse
warming, since general circulation models suggest that
the equilibrium climate consistent with an increased
concentration of the greenhouse gases will have smaller
lower-tropospheric temperature gradients but larger
upper-tropospheric gradients than does the present cli-
mate (e.g., Manabe and Wetherald 1975). [But see
also Stouffer et al. (1989) in which temperature gra-
dients increase at all levels during the transient response
in the Southern Hemisphere.]

2. The model

The model used in this study is a three-layer version
of that used by Haidvogel and Held (1980, hereafter
referred to as HH), with a modified (more scale-selec-
tive) subgrid-scale mixing formulation. There are other
examples of homogeneous quasigeostrophic turbulence
calculations in multilayer models, including some with
imposed mean vertical shear [e.g., the four vertical-
mode model of Hua and Haidvogel (1986)]; but these
have typically focused on problems related to spectral
shape and Charney’s (1971) analogy between quasi-
geostrophic and two-dimensional turbulence, rather
than on the issues outlined herein.

Our starting point is a Boussinesq fluid with constant
stratification N2 on an infinite 8 plane. The equation
of motion and boundary conditions are

30+ J(¥,Q)=—rvV¥Q, 0<z<H, (1a)
OV, + J(¥, ¥,)=—»wW,, z=H, (1b)

¥, + J(¥, ¥,) = —vyVBY, — kHe 'V2V,
z=0, (lc)

where J is the horizontal Jacobian operator, V& = (V?)*
where V2 is the horizontal Laplacian, v is the constant
hyperdiffusivity, e = (f/N)?, « is the reciprocal of the
e-folding time for a barotropic eddy due to Ekman
pumping at the ground, and

Q=VV+ By + e¥,,. (2)

Here ¥ is the total streamfunction, which is decom-
posed into a constant background flow (which provides
the energy source for the system) and a dynamically
active part:

Y(x,y,z,0)=-UZ)y+¥Ux,py,2,1). (3)

To avoid a common misconception about such models,
we emphasize that ¥ has zonally symmetric as well as
zonally asymmetric components. The Ekman pumping
is confined to the lower boundary to mimic the situ-
ation in the atmosphere.

The equations are nondimensionalized using the
velocity, horizontal length, vertical length, and time
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scales (AH, NH/f, H, N/(fA)), where A is the mean
vertical shear, (U(H) — U(0))/H. The nondimen-
sional parameters in the problem become

K« = kN/(f4),
(NH/f)*(N/fA),

y = f?A/(BN’H). (4)

We use the same notation for dimensional and non-
dimensional variables as long as there is no likelihood
of confusion; where the distinction is necessary, the
dimensionless variable is marked by an asterisk.

Dividing the flow into M layers in the usual way
(Pedlosky 1987), with i = 1 at the bottom and i = M
at the top, the governing nondimensional equations
become

0g; +¥ixQiy+ Uigix+ JWi, q;)

Vy

= —yV8q; — 8, kMY, i=1,M, (5)
where §;; is the Kronecker delta, while
g = Vi + M*(Yir — 2 + ¥im1),  (6a)
and
Qiy=7"' = M*(Usy — 2U; + Uiy).  (6b)

To satisfy the boundary conditions in this discrete
framework, one need only set Yo = ¢, and Y41 = ¥ar
in (6a) and Up = U, and Uy, = Uy in (6b). Calcu-
lations with large M are currently in progress; here we
restrict attention to the case M = 3.

In this three-layer case, we set U, = 0 and U; = 1,
so the vertical structure of the mean flow is completely
specified by the value of

U:=(1-a)/2, (7)
where «a is proportional to the curvature of the flow:
92U/9z2 ~ (1 — 2U,)/(Az)? = 9a. (8)

If a = 1 (e = —1), the vertical shear is entirely confined
to the upper (lower) two layers. If « = 0, the two vertical
shears in the model are equal.

3. Linear modes

Before presenting the results for the full model, it is
instructive to consider some properties of the linear
modes. [Davey (1977) discusses the linear inviscid
three-layer model in some detail.] Discarding the non-
linear term in (5), we seek solutions of the form

‘h = Re{Aiez‘(kay—at)} . (9)

In the three-layer model, there are three complex roots
o for each (k, /) pair. The most unstable mode always
occurs for / = 0.

Fixing « = 0.1, » = 3 X 1077 (values that will be
used in our nonlinear calculations), and « = 0, Fig.
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1a shows the nondimensional growth rate of the most
unstable mode as a function of k (with / = 0) for five
different values of +. Figures 1b and Ic are similar
plots for five different values of the curvature «, with
v = 0.5 and v = 1.0, respectively. (The damping at
large wavenumbers is caused by the hyperdiffusivity.)
As v increases, the maximum growth rate (w,,) in-
creases and the wavenumber of maximum instability
(km) decreases. Once v increases beyond ~2, w,, and
k,, have more or less asymptoted to their v = o
(8 — 0) limit, although small wavenumbers continue
to be destabilized.

The maximum growth rate w,, also increases as «
becomes more negative, corresponding to vertical shear
that is concentrated at low levels, while k,, increases
by a modest amount. Inspection of the vertical struc-
ture of the most unstable mode shows that the stream-
function amplitude and westward phase tilt are both
enhanced at low levels when the vertical shear is con-
centrated there, consistent with multilayer results de-
scribed, for example, in Satyamurty et al. (1982) and
Staley (1986). Comparing Figs. 1b and lc, one sees
that the effect of the curvature « on the growth rate is
weakened when v increases. Note also that the curve
for y = 1 and a« = +0.2 in Fig. 1c has a somewhat
different character than the others, a point that we re-
turn to later.

The curves in Fig. 1 all show very small but positive
growth rates at small wavenumbers. These waves are
slightly destabilized by the surface friction. As described
by Davey (1977), there is a long-wave cutoff in the
inviscid three-layer model, just as in the more familiar
two-layer case. Unstable Green modes make their ap-
pearance only as the number of levels is increased fur-
ther.

The mean PV gradients in the three layers are

30/ ="' =9 U, - U)=~v"-9(1 — a)/2,
80,/8y =y ' = 9(U; = 2U, + U)) = v7' = 9,

80:/9y = v+ 9(Us — U2) = v~ +9(1 + a)/2.
(10)

In the absence of the damping terms, baroclinic insta-
bility requires that this gradient takes on both positive
and negative signs. Figure 2 shows the signs of dQ, /3y
and dQ,/dy in a — vy (curvature — mean vertical shear)
space. Restricting consideration to positive ¥ and «
> —1, the gradient in the top layer, layer 3, is always
positive. We will further restrict our study to values of
a less than 1/3, so as to avoid the region in which the

FIG. 1. Linear growth rates for the three-layer model as a function
of zonal wavenumber (setting the meridional wavenumber equal to
zero), with surface friction « = 0.1 and biharmonic diffusion v = 3
X 10~7: (a) for values of the shear parameter v ranging from 0.25
to oo, with zero curvature « = 0; (b) for values of the curvature a
from —0.2 to 0.2, with v = 0.5; (¢) as in (b), but with v = 1.0.
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space, the gradient in layer 3 is always positive.

PV gradient is negative in the middle layer and positive
in the lower layer, a configuration with little relevance
to the atmospheric general circulation. In this restricted
region of parameter space, if ¥ < 2/[9(1 — «)] the
inviscid flow is stable, if 2/[9(1 — a)] < ¥ < 1/(9a)
the flow is unstable, with only the lower-layer gradient
being negative, and if y > 1/(9«) the flow is unstable
with the gradient being negative in the lowest two
layers.

Of the curves in Fig. 1, the case v = 1 and a = +0.2
lies in the region where the gradient is negative in the
lowest two layers. This helps explain the distinctive
character of the growth-rate spectrum for this case. In
all of the other cases, the negative gradient is confined
to the lowest layer only. We concentrate our attention
on this latter, more familiar, configuration.

Negative values of « increase the vertical shear be-
tween the lowest two levels, between which there is a
sign reversal in the mean PV gradient. Positive « in-
creases the shear between the upper two layers, which
[if & < 1/(9v)] have the same sign of PV gradient.
Since the sign reversal is essential to the instability, this
provides an intuitive explanation for the increase in
growth rate with decreasing o« shown in Fig. 1.

The momentum flux convergence in modes of the
form (9)is identically zero, so the sum of the PV fluxes
in the three layers must vanish identically. The vertical
structure of the PV flux in an unstable mode can,
therefore, be described by one number,

(11)

the ratio of the (negative of the) top-layer eddy PV
flux to that in the bottom layer. Figure 3a shows r for

r = —03q3/019,
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the most unstable mode over the range of @ and « for
which we shall be performing the nonlinear calculations
(fixing x = 0.1).

In an unstable mode, the PV flux is always directed
down the mean PV gradient. If « = y7!/9, the PV
gradient and the PV flux in the middle layer both van-
ish, and r = 1. As vy decreases, with fixed «, some of
the bottom-layer flux is compensated in the middle
rather than top layer, so that » < 1, and the mode is
more confined to the lower layers. Increasing « coun-
terbalances this effect; it increases the PV gradient in
the top and bottom layers at the expense of the gradient
in the middle layer, creating a deeper mode and a larger
value of r.

4. Baroclinic adjustment

An alternative way of estimating how v and « affect
the vertical penetration of the eddies is through a vari-
ant of the “baroclinic adjustment” hypothesis, as dis-
cussed for a continuous atmosphere by Lindzen and
Farrell (1980). The three-layer version of this argument
proceeds as follows.

Consider the flow in which initially the PV gradients
are given by (10). Suppose an eddy grows until it ad-
justs the negative gradient in the lowest layer back to
zero in part of the domain by reducing the vertical shear
between the lowest two layers, U, — U, to the value
(9v)~'. (This homogenization can only be a local and
temporary one in our model; the eddies cannot modify
the spatially averaged PV gradient or vertical wind
shear, and, if the statistics are spatially homogeneous,
they cannot change the time-mean shear at any loca-
tion.) This adjustment will also decrease the PV gra-
dient in the middle layer by increasing the vertical cur-
vature of the wind, so that now

6Q2/ay'new = an/ay - |3Q|/a)/|
= 27_1 —9(U; — Uy).

If the middle-layer gradient is positive after this mod-
ification, then 1t is assumed that the eddy will be con-
fined to the lowest two layers only; it has no need to
extend farther upward to stabilize the flow. This will
occur if ¥ < 2[9(Us — U,)]17' = 4[9(1 + a)]"'. In
this case, one expects r = 0, that is, no PV flux in the
top layer.

If instead the middle-layer gradient is now negative,
the vertical shear between the upper two layers will
have to be modified so as to bring this gradient back
to zero. For the purposes of this construction, one can
think of the eddy development as a two-stage process:
First there are equal and opposite PV fluxes in the bot-
tom two layers during the stage in which the lower-
layer gradient is set to zero; then there are equal and
opposite fluxes in the top two layers to reset the middle-
layer gradient to zero. If we denote the ratio of the
fluxes in the second stage to those in the first stage by
£, the total fluxes in layers 1, 2, and 3 will be in the
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FIG. 3. (a) The ratio r, defined by (11), for the most unstable linear mode, as a function of « and v,
with k = 0.1. (b) The ratio r predicted by the baroclinic adjustment construction.

ratio 1: £ — 1: —§, so that r = £. We are assuming here
that the eddy fluxes have the same meridional scale in
each layer, so that the required fluxes are proportional
to the change in the PV gradient. One finds in this way
that

=9(U3—U2)—2’y_1=97(1+a)—4
WU-U)—v"" 9v(l—-a)-2
_ 19Q1/3y| — 8Qx/dy

(12)

10Q:/dy|
Note that this expression satisfies the requirement that
r =1 when v~' = 9q, that is, when the initial middle-

layer PV gradient vanishes.

This prediction for r as a function of v and « is
shown in Fig. 3b for comparison with that obtained
from the most unstable linear mode. The r = 1 curves
are identical in the two panels. When « = 0, the linear
mode predicts deeper PV flux than the baroclinic ad-
justment at small values of v, and a shallower flux
when v is large. The difference between the two pre-
dictions is largest when v is small and « negative.

5. The turbulence model and its horizontal spectra

Horizontally homogeneous turbulence is generated
by assuming that ; is doubly periodic in a square do-
main of width 2« L. Expanding in a Fourier series,

m-1 m-|

Vi, y, )= > > ik, t)ekxtna

k=—m I=—m

(13)

Here m is the number of wavenumbers retained and
A = L' is the nondimensional grid spacing in wave-
number space, which is taken to be equal in the k and
[ directions. The reality of y requires that y(k, /)
= Y*(—k, —I). For the following three-layer calcula-
tions, we set m = 32 and A = 0.15. While geostrophic

turbulence calculations have been performed at much
higher resolution, we require a large number of well-
defined statistically steady states, forcing us to use a
model with a modest spectral range. The resulting sys-
tem is integrated in time using a leapfrog differencing
scheme with a Robert filter to damp the computational
mode. The nonlinear terms are computed without
aliasing error using the transform method. The non-
dimensional time step ranges from 0.005 for the most
energetic experiments, to 0.025 for the least energetic
cases. )

More than 50 statistically steady states have been
obtained for this model for a variety of settings of the
nondimensional parameters. We briefly describe the
horizontal spectra in one of these states and then, in
the following sections, focus on the dependence of hor-
izontally averaged statistics on the model parameters.

The time-mean total energy budget of the model
may be expressed as

0E(k,)/ot=0

=Gk, D)+ Sk, )+ D(k, )+ T(k,]). (14)
Here E, G, S, D, and T represent, respectively, the
energy (available potential plus kinetic), energy gen-
eration, dissipation due to surface friction, dissipation
due to diffusion, and the nonlinear transfer of energy
from one wavenumber to another. Expressions for E,
G, S, and D follow easily from the equation of motion.
The energy transfer spectrum T'(k, /) is most easily
computed as a residual in (14).

The time-averaged spectra of G and T are shown in
Fig. 4 for v = 0.5, « = 0.1, and « = 0. The spectra are
normalized as in HH. Also shown for comparison is
the linear growth rate as a function of k and / for these
same parameters. These spectra are similar in structure
to those of the two-layer model of HH . The generation
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spectrum (Fig. 4b) has a similar shape to that of the
growth rate spectrum, but shifted to substantially
smaller wavenumbers. The maximum in G is at (k, /)
= (1.3, 0) while the maximum linear growth rate occurs
at (k, [) = (2.2, 0). This displacement of the generation
toward smaller values of k becomes more pronounced
as v increases, while increasing the damping, «, reduces
the displacement. It is not surprising to find the energy
move to large scales in quasi-two-dimensional tur-
bulence, but it is of interest that the energy generation
can itself be displaced to large scales with very small
linear growth rates on the time-mean flow. The same
phenomenon occurs in two-layer calculations.

Energy is transferred by nonlinear interactions from
the shaded to the unshaded region in Fig. 4c, with
maximum transfer out of those wavenumbers near the
maximum in G. The longest zonal scales are the prin-
cipal beneficiaries of the energy transfer. In fact, much
of transfer is focused into wavenumber (0.0, 0.75),
which corresponds to a zonal flow with alternating
easterly and westerly jets repeating five times in the
meridional direction (the fundamental wave has /
= 0.15). This jet-formation phenomenon is charac- -
teristic of geostrophic turbulence on a 8 plane (Rhines
1975). The zonal jets that are generated have similar
properties to those in the two-layer model as well as
the wave-mean-flow interaction model of Panetta and
Held (1988). They can be very persistent and organize
the eddy activity into well-defined storm tracks. Why
these inhomogeneities should have such long persis-
tence in a model with homogeneous forcing remains
an unsolved problem.

6. Vertical structure of the PV flux

From: the statistics of the nonlinear model, we have
computed the ratio r, defined by Eq. (11), as a function
of the nondimensional parameters: v, «, and «. We
can compare the nonlinear result with the prediction
based on the most unstable linear modal structure on
the one hand, and the “baroclinic adjustment” con-
struction on the other. Recall that when r = 0 the bot-
tom-layer flux is balanced by a flux in the middle layer,
and the upper-layer flux is zero; when r = 1, the middle-
layer flux is zero and the lower-layer flux is balanced
by a flux in the upper layer; when r > 1, the flux in
the middle layer is of the same sign as that in the lower
layer, and the upper-layer flux balances their sum.

In both the full model and the linear mode structures,

FIG. 4. (a) Growth rate of linear modes, for vy = 0.5, a = 0, «
=0.1, and » = 3 X 1077, as function of zonal (k) and meridional
(1) wavenumber. (b) Energy generation spectrum, G(k, /). (c) Energy
transfer spectrum, T(k, /). The contour intervals in (b) and (c) are
logarithmic, the contour values being 10%* for integer n. The G
spectrum is normalized so that the integral over (0 < k < +o00, —©
< /< +o0), using the symmetry G(k, [) = G(k, —I), is equal to the
energy generation, averaged in the vertical, per unit horizontal area;
T is normalized consistently.
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r is almost independent of the surface friction «, for «
< 0.3. (The baroclinic adjustment construction makes
no reference to «.) This is true despite the fact that the
amplitude of the eddies in the nonlinear model is very
sensitive to «, as emphasized in section 7. As k varies
from 0.05 to 0.3, with ¥ = 1.0 and « = 0, r varies by
only 13% in the nonlinear model, while the energy
level in the flow varies by nearly a factor of 30.
Figure 5a compares the variation of r in the nonlinear
model as a function of v, holding xk = 0.1, « = 0, and
v =3 X 1077, with the value for the linear most unstable
mode and the prediction of the baroclinic adjustment
construction. The linear modal structure is a better
predictor of the vertical structure of the nonlinear
model’s PV flux than is the baroclinic adjustment when
v < 0.5. In this region the latter predicts that only the

(a)
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FIG. 5. (a) The values of r predicted by the nonlinear turbulence
model as a function of ¥ with @ = 0, x = 0.1, and » = 3 X 1077
(small squares), the values for the most unstable linear mode (solid
line), and those predicted by the baroclinic adjustment construction
(dashed line). (b) Same as (a) but as a function of «, with ¥ = 1.0.
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lowest two layers will be dynamically active, whereas,
in fact, the linear modes extend somewhat into the top
layer, so one does not expect the nonlinear model’s
PV flux to vanish identically in that layer. The linear
most unstable mode underestimates the vertical extent
at large v, but overestimates it at small vy. The baro-
clinic adjustment works very well at large v.

The close agreement between the linear most unsta-
ble mode and the nonlinear model is striking, since
the maximum eddy energy generation occurs at larger
horizontal scales than does the maximum linear growth
rate. (Similar agreement has recently been obtained
with a ten-layer model.) The difference between the
generation scale and the scale of the most unstable wave
increases as the flow rapidly becomes more energetic
with increasing v and decreasing «. For example, max-
imum energy generation occurs at k = 0.6 when vy
= 1.0 and « = 0.1, while the linearly most unstable
mode occurs at k = 1.9. The linear modes have the
property that longer waves are more deeply penetrating
and have larger values of r. [ For the linear modes, the
value of r typically increases by a modest amount as
the wavenumber is reduced below that for the most
unstable mode, and then decreases abruptly as the
growth rates plunge to very small values (see Fig. 1).]
As the generation shifts to longer waves with increasing
v, one might anticipate that linear theory at the most
unstable wavenumber would underestimate r, as in
Fig. 5a. However, if one tries to predict r by using the
linear structure at the wavenumber of maximum en-
ergy generation, the comparison with the nonlinear
model is very poor. In many cases, there is effectively
no modal instability on the imposed mean flow at the
wavenumber of maximum energy generation.

By any measure, the model is strongly nonlinear.
As one can see from Fig. 4 for ¥ = 0.5, in the region
of maximum energy generation it is the nonlinear
transfer that is primarily balancing the generation, and
not dissipation. Why the linear most unstable mode
should predict the vertical structure of the PV flux this
well is unclear. The “environment” that a typical eddy
actually feels is very different from the imposed time-
mean flow, particularly because of the existence of the
persistent jets. Perhaps the structure of the PV flux is
optimal in some appropriate sense for both the tur-
bulence model and the most unstable modes in the
linear model.

Figure 5b is a similar plot, but as a function of «,
with v = 1.0. All three curves must pass through the
value r = 1 when a = 1/5. Once again, linear theory
provides a good approximation to the nonlinear mod-
el’s vertical structure, although the error grows to
~25% at the smaller values of & shown. The baroclinic
adjustment also performs well. This agreement suggests
that the physical picture underlying this construction
has some value.

The values of r generated by the nonlinear model
throughout the y-a plane are displayed in Fig. 6. The
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contours are drawn subjectively. This result is to be
compared with the predictions in Fig. 3. The largest
discrepancy with the linear modal structure occurs for
small v and negative «, where the nonlinear model’s
r values are less sensitive to a.

7. Magnitude of the eddy flux

We now describe how the magnitude of eddy fluxes
varies as a function of three important nondimensional
parameters: the mean vertical shear v, surface friction
k, and curvature a, with emphasis on the latter. We
focus on the potential vorticity flux in the lowest layer
F,. Note that F, = (r — 1)F, and F; = —rF,, where r
is the ratio discussed in the previous section. Also, the
heat or buoyancy fluxes at the upper and lower inter-
faces are proportional to —F; and F), respectively,
while the eddy energy generation G is proportional to
the vertical integral of the PV flux weighted by (—U).
(Since U, = 0, G is proportional to —F3 — [(1 — «)/
2]1F; = {r+ [(1 = a)/2])(1 — r)} F;.) Thus, the two
quantities' F, and r carry most of the information of
interest concerning the domain-averaged eddy statis-
tics.

The relation between the dimensional and nondi-
mensional PV flux is

F=0vq = A’H(fIN)Fy(v, x, @).  (15)

The factor in front of the nondimensional function F,
can be understood by thinking of v’ ~ HA and .¢’
~ (HA)/(NH/f). If one ignores variations in F,, then
this scaling of the eddy flux is essentially equivalent to
the scheme of Stone (1972).
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F1G. 6. The values of r obtained from the nonlinear model
in the a—v plane. Contours are drawn subjectively.
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We have certain expectations concerning the depen-
dence of F, on a. When «.decreases, the vertical shear
between the lowest two layers increases, while that be-
tween the upper two levels decreases. As discussed in
the context of the linear-mode growth rates, since the
potential vorticity gradient changes sign between the
lowest two levels, one anticipates a larger eddy energy
level and larger eddy fluxes for smaller «. The fact that
the linear growth rate increases with decreasing o rein-
forces this expectation. However, there is a competing
effect: as a decreases, the eddy fluxes do not penetrate
as deeply (Fig. 6), and, as argued in Held (1978), this
will have the effect of reducing eddy amplitudes. The
argument is that shallower eddies will also have smaller
meridional particle displacements in a turbulent
quasigeostrophic flow, and will be able to tap less of
the mean available potential energy. The relative im-
portance of these two effects is difficult to anticipate.

Figure 7 shows how the nonlinear model’s F; varies
with the parameters «, «, and a. Three cross sections
of this three-dimensional parameter space are shown:
the (y-a) plane with « = 0.1; the (x-a) plane with v
= 1.0; and the (vy-«) plane with « = 0. The contours
are subjectively drawn.

These results show that the sensitivity to the cur-
vature « is qualitatively similar at nearly all the values
of v and « examined. The flux increases with decreasing
a. We can conclude that for a fixed vertically averaged
vertical shear, the flux in this model is increased by
concentrating the shear in the lower part of the domain.
The implication is that the effects of the changing ver-
tical scale of the eddies is of less importance than the
vertical shear in the region of reversed PV gradient.
The only exception is the slight increase in F, as « is
increased from 0.125 t0 0.2, with ¥ = 1.0 and « = 0.1,
which is evidently related to the fact the o = 0.2.case
lies in the region with negative PV gradient in the mid-
dle layer.

A striking aspect of these results is the very strong
sensitivity of the flux to v, even when the value of v
is sufficiently large that the growth rate of the most
unstable mode has asymptoted to its v — oo limit.
(Compare the maximum growth rates for v = 1 and
v = 2 in Fig. 1, and note that the PV fluxes in these
two cases differ by a factor of 5.) Growth rates on the
long-wave side of the most unstable wave continue to
increase as vy increases, raising the possibility that these
long-wave growth rates may play an important role in
determining the equilibrium energy level in the flow.
An alternative explanation for this sensitivity is sug-
gested by the observation that as 4 increases, energy
no longer accumulates in zonal jets, since the effective
strength of the g effect is weakened. The jets could be
playing an important role in stabilizing the eddies, per-
haps in the way argued by James (1987).

" The PV flux increases with decreasing «, except pos-
sibly at very small values of «y. This dependence is es-
pecially strong at large y. A theory for this sensitivity
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(a) K=01 is essential to any attempt at explaining the fluxes pro-
duced by this model.

o !
78 /] 8. Sensitivity to changes in upper- and lower-level
/ ’]. vertical shear

! A change in the dimensional vertical shear between
] ! the upper or lower two layers changes all three non-
j ! dimensional parameters, ¥, «, and «. For example, if
2 793 128 28 [/ a7s ] the low-level shear S, = U, — U, is increased, holding
! ! ! ! the upper-level shear S, = U; ~ U, fixed, then « de-
L ! / creases, but vy increases and « decreases, since these are

0.1

7
! I / ! / . nondimensionalized by the vertically integrated shear
o 122 s"%o llé.s / 264 S| + S, = U; — U,. If the upper-level shear increases,
[ . holding S; fixed, then v increases and « decreases as
fe 1 le [l 4 before, while « increases. From the dependence of the
potential vorticity flux on « described in section 7, it
0 05 10 15 20 is clear that the flux is more sensitive to lower- than to
v upper-tropospheric shears, but it is not immediately
clear from these results 7ow much more sensitive.

(b) v=1.0 We increase the dimensional vertical shear in the
upper level by 10%, holding all other dimensional pa-
VT rameters fixed, and compute the percentage by which
! the dimensional flux increases. The calculation is then
. . ‘e repeated for a 10% decrease in the shear. We average
82 128 078 these two numbers together to estimate the sensitivity
\ \ of the flux to a small change in shear. The same cal-
\ culation is repeated, changing instead the lower-layer
Lo A . shear. These quantities are obtained using an unper-
| 743 44 H M o turbed state with « = 0 and « = 0.1, and several different
VoooN Y values of . The results are plotted in Fig. 8 as a func-
1870 \ \ tion of . Also included in the plot is the ratio (sen-
-01F \ \ . Vo ] sitivity to lower-level shear)/(sensitivity to upper-level

103 7.07 2.81 \\1.31 13.2 shear).

\\ A ! The large sensitivities obtained, as large as 70% for
-02- SN AN \ 7 a 10% increase in the low-level shear when v = 2.0,
are themselves of interest, as they indicate how strongly

0 01 02 03 baroclinic eddies resist changes in the meridional tem-

K perature gradient. They can be understood as due, first

(0) o¢=0 of al_l, to the fact that the dimensional flux (15) is pro-

- portional to the square of the shear, and, in addition,

03k o35 S e . that the nondimensional flux increases quite rapidly

/ / with the increase in v and decrease in « that correspond
! % 3%6 to an increase in shear.

; , 3.03 Based on the baroclinic adjustment argument and/

/ / ~==5 or linear-mode structures, we expect upper-level shears

2" %, to become less relevant as y decreases, since the eddies

are becoming shallower. We clearly see this tendency

K 0.05 o [/ S T in Fig. 8. The sensitivity to the low-level shear is a

i/ e 9~ factor of 2 greater than the sensitivity to the upper-

3 agh L level shear for v = 1, and a factor of 4 greater when v

e L = 0.5.

02+ 1

01

! /'ls.o FIG. 7. A summary of the values of F;, the nondimensional po-
o tential vorticity flux in the lower layer, obtained in the numerical
00 0'5 1‘0 1'5 ZLO integrations of the nonlinear model: (a) as a function of v and «,

: : - i with « = 0.1; (b) as a function of x and «, with v = 1.0; and (c) as
Y a function of v and «, with @ = 0. Contours are subjectively drawn.
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F1G. 8. Percent change in the dimensional lower-layer potential
vorticity flux for a 10% change in the dimensional shear between the
upper two layers and the lower two layers, as a function of v, with
x = 0.1. The ratio (sensitivity to upper shear)/(sensitivity to lower
shear) is also shown by the dashed line.

9. Concluding remarks

The eddy potential vorticity (PV) flux is the central
quantity that one needs to understand if one hopes to
formulate an eddy flux closure theory. The three-layer
homogeneous turbulence model provides a relatively
simple setting for studying the vertical structure of the
PV flux and the relative importance of upper- and
lower-tropospheric temperature gradients for the mag-
nitude of the flux. In studying this model, we find that
1) the vertical structure of the most unstable mode on
the time-mean flow provides a useful approximation
to the vertical structure of the turbulent PV flux; 2) a
“baroclinic adjustment™ construction that allows one
to estimate when the PV flux will be confined to the
lowest two layers, and the extent to which it penetrates
into the upper layer, also provides a fairly reliable pre-
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diction, although it underestimates the vertical pene- -

tration of the eddies when the vertical shear is small;
and 3) in an atmospheric parameter setting (with neg-
ative PV gradient in the lower layer only) the lower-
layer temperature gradient has a stronger influence on

the magnitude of the PV fluxes than does the upper- -

layér gradient. For the same mean shear, curvature that
conceiitrates the shear at low levels (where the mean
PV gradient changes sign ) gives rise to stronger eddies
than curvature that concentrates the shear at upper
- levels, even though the eddies are deeper in the latter
case.

The relevance of these results for more realistic in-
homogeneous turbulent flows remains to be deter-
mined. Our intuition is that these results should remain
qualitatively relevant for the horizontally averaged PV

VoL. 49, No. 19

fluxes, or equivalently, the horizontally averaged heat
fluxes, in inhomogeneous flows. However, they tell us
little about the climatological momentum fluxes whose
existence is a direct consequence of the horizontal in-
homogeneity. A variety of results, particularly eddy life-
cycle studies on the sphere (Simmons and Hoskins
1978), suggests that linear modal structures are of lim- -
ited value in understanding momentum fluxes in the
atmosphere, as these are tied to the final stages of baro-
tropic decay in the upper troposphere. The momentum
flux could be more sensitive than the heat flux to upper-
level temperature gradients.
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